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Brittle interface layers and the tensile strength
of metal matrix-fibre composites

M. Kh. SHORSHOROV, L. M. USTINOV, A. M. ZIRLIN, V. I. OLEFIRENKO,

L. V. VINOGRADOV

A. A. Baikov Institute of Metallurgy, USSR Academy of Sciences, Moscow, USSR

The influence of brittle layers on the ultimate tensile strength of metal matrix composites
is discussed. An equation has been derived to calculate the first critical thickness of the
layer. The brittle fayers have two effects on the fracture of the fibre, one of which is the
value of the local stress near the tip of the crack, situated at the fibre—layer interface.
Methods have been developed for the theoretical calculation of the critical stress intensity
factor, K¢, of brittle materials. Experimental results with B—SiC fibres have shown

that their tensile strength is reduced with increasing thickness of the SiC layer. The
critical thickness of the layer, ¢, for B—SiC fibres is about 1.0 to 7.5 um, which
coincides well with the theoretical value of .

1. Introduction

Currently there is considerable interest in the
problem of the influence of the interface layer on
the tensile strength of metal matrix—fibre compo-
sites. This problem has great practical significance
because increasingly composites are being
developed which have either protective deposits on
the fibres or an interaction zone between matrix
and fibres. The majority of experimental results
shows that the tensile strength of composites
decreases as the thickness of the layer increases.
The present paper develops the latter approach in
a more general sense.

2. The critical thickness of the brittle

interface layer
Let us consider a simple model system as shown in
Fig. 1, which represents a fibre and concentric
interface layer. The interface between fibre and
the layer has a strength of not less than the com-
ponents of the model and is considered to be
ideally smooth. The diameter of the fibre d; is
constant and the fibres are of unit length. Stress is
applied along the axis of the fibre and parallel to
it.

Weibull has shown [1] that the strength of
brittle materials is affected by their volume
according to the equation
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orfoy = (V2/ V)P (1)
where 0y and ¢, are the average tensile strengths
of a brittle material, having volumes V; and 7,
respectively; § is a Weibull coefficient, which shows
the strength distribution of the material. Exper-
imental data have shown that the tensile strength
of the brittle layer is increased by a decrease in its
thickness. It is possible to transform Equation 1
into the form

011/0 = (Fro/Fy)"® ©))

where 03; and Gy, are the average tensile strengths
of brittle layers having cross-sectional areas of £,
and Fj, respectively; f; is a Weibull coefficient of
the tensile strength distribution of the layer.

As the thickness of the layer changes fracture
occurs in one of three different ways. In the first,
the failure strain of the layer €4 is less that that of
the fibre €., which is considered as constant in
this model. The layer fractures first and is followed
by fracture of the fibre. In the second case, ey is
greater than ey, therefore the fibre fractures first
and is followed by fracture of the layer. Thirdly
€q equals €y and fracture of the components
occurs simultaneously, i.e.

(3)

€yt = €u
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Figure 1 The model system — fibre/layer.

where €,s and €y are the average failure strains of
the fibre and the layer, respectively. Equation 3 is
transformed into the following

Oue/Es = Ow/E1 4)

where E; and Ey are the Young’s moduli of the
fibre and the layer respectively; G,z is the average
tensile strength of the fibre; Gy is the average
tensile strength of a layer of given thickness (we
shall call this the critical thickness for the present).
If we assume Oy = 0yy, F1=Fy, Fif = F), and
0a = 0y then Equations 2 and 4 will give the
following equation

(%)

where F* is the critical cross-sectional area of the
layer of critical thickness. It is more convenient to
use another equation which is a modification of
Equation 5. This equation has the following form

_ Bz
" ‘de Eioy ds
Pr I e ££0ul %
1 [ (2 | +n(de + 1) (Ela—uf 5 (6)

where £ is the known value of the thickness of the
layer for which Gy is known, #{ is the critical
thickness of the layer, d; is the diameter of the
fibre. It is possible to simplify Equation 6, if we
replace Gy by Giy. Here o7y is the normalized value
of the strength of the layer. The latter corresponds
to the crosssectional area of the layer, which is
equal to the cross-sectional area of the fibre.

Therefore, we have
= ﬁl
|4 [0 ]—1 .
Elouf

ds
T '5{«/

Oy can be calculated from Equation 2. Equation 7
shows that #f increases with the diameter of the
fibre and the ratio £;i3/E 04 In the latter case,
tf increases in parabolic fashion (Fig. 2). If

@)

Figure 2 The graph showing effect of E¢50/(E15) on 1}

Es0m/E 0y = I, then #f = 0.2 di. Therefore, from
a practical view point it is desirable to select
materials for fibres and protective layers in such a
way that the ratio £:0y/E}0,; is as high as possible.
If the ratio is less than unity, ¢ will decrease with
increasing $; and vice versa (Fig. 2).

We now have an equation which enables us to
calculate the critical thickness of the brittle inter-
face layer for any composite material containing
brittle fibres. If f/f, the layer will break first and
only after that will the fibre break. Cracks which
appear as a result of the fracture of the layer affect
the fracture resistance of the fibre. They are, in
fact, notches in the fibre. In the next section we
shall show the interaction between these cracks
and the fibre.

3. The influence of cracks in the layer on
fibre fracture

Ustinov ef al. [2] have studied the microstructural
peculiarities of fractured layers in an aluminium/
steel composite. Their experimental data have
enabled them to construct a model of the propa-
gation of cracks throughout the layer. According
to this model (Fig. 3) the cracks appear at the
layer—matrix interface (point S). The crack propa-
gates through the layer towards the layer/fibre
interface and eventually reaches the fibre (point C).
If the stress intensity at point C is not enough to
cause fracture of the fibre, the crack will by-pass
the fibre completely. Otherwise the crack will
enter the fibre and will propagate through the
layer and the fibre simultaneously (Fig. 3). So in
fact we have to discuss two different types of
fracture. The first type (point C) is analogous to
the fracture of a semi-infinite plate with an edge
crack. The second type is analogous to the fracture
of a bar with a circular crack.
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Figure 3 The model of crack propagation in the fibre/layer
system.

Let us discuss the first case. This is represented
by the model in Fig. 4. The model consists of a
semi-nfinite plate of two different brittle materials
separated by the interface, which is parallel to the
edge of the plate. The interface is strong enough to
resist delamination. One component of the model,
i.e. the layer, has only one finite dimension, that
is, the ‘thickness of the layer. This component
contains the crack with its tip at the interface. At
infinity the applied stresses are parallel to the
interface and they have different values pro-
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Figure 4 The first model of fracture of the fibreflayer
system.
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portional to the Young’s moduli of the compo-
nents. This is a state of plane strain. Experimental
data obtained by Ustinov et al. [2] permit us to
regard the crack as quasi-static.

If the model system is homogeneous, i.e. the
two components have similar properties, then the
stress around point C (Fig. 4) will be given by the
equations

Ky 6 6 3

Opx = (o )1/2 cos— [1 —sin -2—sm —{\ (8a)
K; 0 6 30

Oyy = W COSE [1 + smEsm ‘2“] (8b)

K; 6
Tay = (2”)1 o sm

where r is the distance from the tip of the crack
(point C) to a given point, § is the angle between
the X-axis and the radius-vector . We are more
interested in stress gy, at a distance from point C
of not more than approximately one atomic radius
r=r*. So if § =0, Equations 8a to ¢ become:

_ K
(27.",*)1/2

30
COS —COS —,

29973 (8c)

Oyy = (9)
where Kj is the stress intensity factor. Paris and
Sih [3] have shown that in case of a single phase
model system, K is given by the equation

Ky = 1.120(na)'"? (10)

where o is the nominal stress, a is the greater semi-
axis of the elliptical crack. If we come back to our
model system which consists of two different
materials, we must assume that K will be affected
by the difference between the properties of these
materials [4, 5]. Therefore, we will introduce the
special factor k, which is affected by the ratio
E\/E; (see Appendix). So that we have

Ky = 1.12¢0(na)"?. (11)

Equation 10 is valid for a fine fibre because the
ratio d¢/#; is more than 10 + 100. If we substitute
in Equations 9 and 11 o and # for ¢ and a,
respectively, we obtain the following equation:

= 0.790¢(t/r*)"?, (12)

where o¢ is the tensile stress in the fibre. We assume
that g¢ = 04¢, where oy¢ is the fracture stress of
the fibre. Here the fracture of the fibre, which is
initiated by the crack in the layer, occurs in
practice simultaneously with the fracture of the



layer, i.e. at the fracture strain of the layer &,.
Therefore, oy is given by Equations 2 and 3 in the
following way:

— _ _ _ /8
Qut _ o _ s 0w _ O _ O 1
U Gy = L J ) P it v

“ YT BB B \R

(13)

After substituting #, f1; and ¢y, by #{, f and
Gu, respectively and inserting Equation 13 into
Equation 12, we have the general equation

I _
Oyy =

0.79 g—i— Tt Pa (V- VAL, (14)
Here oy and # are the known values of the strength
and thickness of the layer, respectively, £ is the
current value of the thickness of the layer. Equation
14 shows that oi,y increases with # (Fig. 5). If oi,y
is greater than b = F¢/10 (o4 is the theoretical
ultimate tensile strength of the fibre material),
then the fracture of the layer will immediately
initiate the fracture of the fibre at point C (Fig. 4).

Let us calculate gy, for a number of well-
known layer/fibre systems at condition #* =71 in
order to ascertain whether or not the fracture of
the layer immediately initiates the fracture of the
fibre. First we must calculate the critical thickness
of the layer #i", using Equation 7, and then U;y
using Equation 14.The results of these calculations
are shown in Table I. The layer and the fibre will
fracture simultaneously if 0, > of;. Kelly [6] has
shown that the factor f; equals from 3 to 6. Table I
shows that for the system B/(BN) where the ratio
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Figure 5 The effect of £} on gy,

E:6m/0us E1 2 1 in practice, there is no detrimen-
tal effect of alayer of any thickness on the strength
of the fibres. For the three systems B/(B,C),
B/(SiC) and B/(BN), the fracture of a layer of
critical thickness in practice always initiates
immediate fracture of the fibre. Morin [7] has
shown that in the system B/(B4C), the strength of
the fibre begins to decrease when the thickness of
the layer is more than 7 to 8 um. This more or less
coincides with the calculated value of the critical
thickness of the layer of B, C when §; equals 3 to 4.
Camahort [8] and Ryder er al. [9] have shown
that the tensile strength of the system B/(BN) did
not decrease when the thickness of the layer was
equal to ~04um. Unfortunately, there are no
further data for this sytem. Nevertheless the
existing data do not contradict our calculated
values for this system.

There are systems (two are shown in Table I —
B/TiB, and B/AIB,), where the fracture of the
layer does not always immediately initiate fracture
of the fibre. In this case the crack in the layer at
the moment of meeting the fibre at point C (Fig. 3)
creates oy, which is less than of¢, thus the crack
from the layer will not enter the fibre but will pass
around it, as shown in Fig. 3. Therefore a new
model should be discussed which comprises of a
cylindrical fibre, a co-axial cylindrical layer and a
circular notch (Fig. 6). The notch tip is situated on
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Figure 6 The second model of fracture of the fibre/layer
system.
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the fibre/layer interface. The materials of the layer
and the fibre are different and have different
Young’s moduli £¢ and Ej and tensile strengths of
Gyt and 0y. The model is loaded at infinity by
stresses in the layer, 0y, and the fibre, o, which are
proportional to the Young’s moduli, £} and £%.

If this model (Fig. 6) was homogeneous, the
stress intensity factor would be calculated accor-
ding to Paris and Sih [3] from the equation

Ky = a(nDo)"*f(d¢/Do), (19)

where o is the nominal stress in the cross-sectional
area nd/4 and factor f(dg/Dy) is a function of the
ratio dy/Dy. In composite materials, the ratio
ds/Do must not be less than 0.9, so f(d¢/Dy) =0.2.
However, our model has two components of
different materials, therefore Ky must be affected
by the ratio E;/E;. We can depict this effect by
introducing factor k into Equation 15, giving

K = 0.2ka¢(mDg)"? (16)

where o¢ is the nominal stress in the fibre. If we
insert Equations 13 and 16 into Equation 9 and
assume ty, =4, tj; =1, 013 = Oy, Of = Oyg, then
we shall have the equation for calculating o, at
the tip of the crack for the second model (Fig. 6).

o, = 0.14 k(G /E) EgtVA(*) V2 (ds + 201) V2.
amn

It is also necessary to remember that oy, and
oi,ly are stresses which appear during fracture of
the layer. In fact, for both models, the layer frac-
tures at the same fracture strain €y (see Equation
3). Equation 17 shows that if §; = 3 to 6 then oily
will decrease with increasing 4, (Fig. 5). The curves
of Equations 14 and 17 intersect each other at f;,
which equals # .

R = 0.034d; (18)

Equation 18 was derived by assuming that
Ky ~k, (for the sake of simplicity). We can see
that if # < #, then oL}, > o}, (Fig. 5). Fig. 5
shows how o,,,, changes with changing of thickness
of the layer. Let uslook at Fig. 5 in detail. First it
can be divided into four major areas from the
viewpoint of the theoretical strength of the fibre,
O&f.

Area OA. Here ots < 0%, min, where 03y iy s
the minimum stress oy, . This can be calculated by
inserting a value t* in Equation 15. At #; > f;° only
the first model works (Fig. 4) and o}, changes
from point f (at 4 = ;) to point L (Fig. 5). The

e?,/ﬁ
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Figure 7 The effect of f] on G,¢ When U&f < Oyys-

strength of the fibre G, for this area is calculated
from the equations:

Gy = const = G at0<A<g (19)
Oy = EdENTa(n/6)" atfg>4, (20)

where &b is the initial strength of the fibre
(without layer). These equations give a curve,
which shows change of the fibre strength o, as a
function of the thickness of the layer (Fig. 7). We
can see that for the area OA, where ot < oi,ymin,
there is only one characteristic thickness, which
we call the critical thickness #; the latter divides
the graph in Fig. 7 into two parts. In the first part,
where 0 <<#] <, fracture of the model system is
initiated by fracture of the fibre. In the second
part, where 1 2 1{', fracture of the model system is
initiated by the fracture of the layer. Here o
decreases monotonically with increasing #,.

Area AB. Here 0Lymin < 0% < 0yys 0yys i
calculated by inserting #0 into Equation 14 or 17.
The strength of the system is determined by
Equation 19 (if 0 <7z <£) and Equation 20 (if
112 £f). Now let us discuss a specific example. We
assume the fibre has the theoretical strength
ot = ot (Fig. 5). We shall trace how Oyy changes
with increasing 4. If 0 <#; <¢f, the fracture of
the system will be initiated by the fracture of the
fibre, so that the strength of the system is
determined by Equation 19. If f < f < £, then
0yy < 0bs <om,. Therefore, the system fractures
according to the second model (Fig. 6). Here oL,
changes from point d (at #{ = #") to point e (at
n =~ ') (Fig. 5). If 11 > ;' then o < o}, ; the sys-
tem fractures according to the first model (Fig. 4)
and o}, changes from point m to point L. In this
example the fracture stress, oy, , changes along the
curve demsL. If ol = 0, then o, will change
along the curve desL. For the area AB a typical
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graph Gy versus £ is the same as the analogous
graph for the area OA (Fig. 7). Here again there
is only one characteristic thickness of the layer,
i.e. the first critical thickness f{ .

Areq BC. Here 0,5 < 0h < 00y max * Oyymax i
calculated by inserting £ into Equation 17.1f 0
< f < 11, the strength of the system will be deter-
mined by Equation 19, butif#; > £ and 0% < o2},
or % < o}, it will be determined by Equation
20. However, in this area it is possible to meet a
case where 0%, <ol; > 0%, , and then fracture of
the layer does not immediately initiate fracture of
the fibre. Therefore for the fracture of the fibre it
is necessary to apply an additional load to the
system until oy, reaches obs. In this case the
strength of the fibre is determined by the equation

ohs ()2
0.14 k(d; +26)"*

Euf = (21)
Equation 21 was derived from Equations 9, 13 and
15 and it is suitable for certain interval values of #.
This interval can be found by inserting ot into
Equations 14 and 17 and by their joint solution. A
typical graph &, versus f for the area BC is shown
in Fig. 8. Let us discuss another specific example.
We assume that the fibre has a theoretical strength
ot% (Fig. 5). For the interval fff <1 <#? we have
o, < 0% < of, and the system fractures
according to the second model, For the interval
0t <n<n’, oy, <% > o), and the system
again fractures according to the second model. But
for interval > < #, o}, > o'%, and the system
fractures according to the first model. Thus for
this example the local fracture stress o,, must
change along the line drvL and #? = £, ;> =
t7** (Figs. 5 and 6).

The area above point C. Here 6%z > 00y max.

>
"o egq.79
t eg.20
eg. 21
i { eg.20
a f:‘ i:(x _é‘:eaé*

7
— 1
Figure 8 The effect of #] on oy When oy < af,_f < Ugymax-
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If 0 < 11 < #, the strength of the fibre will be
determined by Equation 19, but if £ > £, the
strength of the fibre will be determined by
Equation 21, because here ots > ol . >0l A
typical graph of Gy versus # for the area above
point C is shown in Fig. 7.

The Fig. 5 shows that a situation is possible
where the fracture of the layer does not immediately
initiate fracture of the fibre. The graph 7y—¢,
shown in Fig. 8 has four specific parts and three
critical thicknesses of the layer; &, #f* and #**.
¥ and #** can be calculated from equations

i :[7.5_1___@*)1/2 (22)

2818 -2)
Ik (—T—ull‘ll/ﬁl]

G f
f* o~ diY? {1 4K "E—“l‘ t}’ﬁl(r*)—l/z} . (23)

The equation for calculating o,,s can be
derived from Equations 14 or 17 and 18, so that
we have

E
Oyys = 0.79k Elf GatlB(r*)2(0.034 d) 2 VA,

(24)

It can be seen that the interval between £ and
#7** increases with the ratio £1/G ¢ (through factor
«). In principle, it is possible that the third critical
thickness can be missing from the area BC.
~ Let us return to Table I. We can see that the
systems B/(B4C),B/(SiC) and B/(BN) are positioned
in the area OA below point A in Fig. 5, but that
systems B/TiB, and B/AIB, occur in the area AB

. above point A and below point S (if 8; = 4 to 6).

If B, = 3, these systems will be disposed in the area
OA below point A, because in this case ol =
E¢/10 = 3800 kgmm™ which is less than oy min-
Nevertheless, all five systems have a similar plot of
¢ versus t' which is shown in Fig. 7. However,
systems B/(B4C), B/(SiC) and B/(BN) fracture
only according to the first model, and systems
B/TiB, and B/AIB, fracture according to the first
and second models: if #; < #* (Fig. 5), they will
fracture according to the first model. We have met
this transition situation during calculation of o,
due to the fracture of the layer of the critical
thickness. This is shown in the last four columns
of Table I. When B, = 3, the systems B/TiB, and
B/AIB, will only fracture according to the first
Model (Table I and Fig. 7).



Table 1 shows for all the systems discussed that
the fracture of the layer of any thickness £
(t; > 1) immediately initiates the fracture of the
fibre. However, Fig. 5 shows that, in principle, it is
possible to meet systems where this does not
always immediately occur.

4. Experimental study of the influence of
the thickness of the layer (deposit) of
SiC on the UTS of B—SiC fibres

For experimental verification of the theory, B—SiC
fibres were used. Some early results have been
published [10]. The diameter of the boron core
was 0.1 mm, and the thicknesses of the SiC layers
were 1.5, 3, 5 and 8.5um. The layers were
produced by a gas chemical condensation process
at a fixed temperature for all thicknesses. The
thickness of the layer increased with the duration
of the process. The temperature and duration of
the process, however, were not so great as to
reduce noticeably the strength of the boron fibre.

All fibres were tested on a “Shemadzu” tensile
test machine with deformation rate of 0.1sec™.
The gauge length of the samples was 25 mm. The
samples were prepared by a standard method,
which is typical for these kinds of samples.

The results of this test are shown in Table II
and in Fig. 9. They show that a drastic decrease in
strength of the fibres will occur when the thick-
ness of the layer is greater than 1.5 um.

Fig. 9 shows the experimental and theoretical
results for the tensile strength of the B—SiC fibres.
The calculated results are shown by curves drawn
for different values of 3(8, = 4, 5 and 6). The
results were calculated from the equation:

(25)

where 0y p/sic, Oy sic are the tensile strength of
B-SiC and SiC fibres, respectively. 6, sic Was
calculated from Equation 25 assuming that g, =
200kgmm~2? when the thickness of the layer

0w, B/sic = OusicVsic + 0y VB

TABLE II Tensile strength of the B/SiC fibres with
different layer thicknesses

t1(um) Gy, B/SIC Sy B/SIC, Number of
(kgmm~?) (kgmm "?)  samples
0 298 48.3 63
1.5 290 58.5 52
3.0 247 50.6 52
5.0 233 18.5 64
8.5 165 12.9 67

¥
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20
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Figure 9 Experimental results of tensile testing of B—-SiC
fibres with different thicknesses of the SiC layers. The
curves were calculated theoretically.

equals ~0.02mm (this is equivalent to a fibre
diameter of 0.1 mm). Vg;c is the volume fraction
of SiC in B—SiC fibres (Vgic =F,); Vp is the
volume fraction of boron in B—SiC fibres. 7, g is
the nominal tensile fracture stress in the boron
component of the B—SiC fibres. This is calculated
from Equation 20. We also used the following
characteristic data in our calculation: Egic =
47000kgmm™2; EFp = 38000kgmm™ and the
tensile strength of boron fibres (without the SiC
layer), = 298 kgmm™2 (see Table II). The critical
thicknesses of the SiC layer, ff, calculated from
Equation 7, were 3.88; 2.15; 1,18 and 0.65 ym for
B = 3,4, 5 and 6, respectively.

We can see that the experimental and theoretical
data for §; = 4 to 5 coincide quite well. These
values of B, were more typical for SiC fibres.
Nevertheless, there is quite a large discrepancy
between experimental and theoretical data at a
thickness of 8.5 um. Further study has shown that
the tensile strength of the boron fibres is itself
drastically reduced due to too long a deposition
process of the SiC layer with a thickness of 8.5 um.
Annealed boron fibres had an ultimate tensile
strength, 0, g, 0f 229 kgmm™. This, and probably
the cracks which appeared in the layer due to
stresses in the components, are the reasons for
discrepancy. The theoretical critical thickness of
the layer #f* lies between points B (for §, = 4) and
C (for 8; = 5) (see Fig. 9). It is more probable
that ¢ equals ~1 um.

The general conclusion from these experimental
data is that our theoretical treatment is confirmed
by the experimental results from tests on B/SiC
fibres.
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5. Assessment method for K¢ of brittle
fibres

Archangelskaya and Mileiko [11] have obtained

an equation which allows us to calculate K¢ for

fibre composite materials, if we know K¢ of the

matrix and fibres. At the moment there is no way

of determining K¢ of the fibres alone.

Previous sections of this paper give an
opportunity to develop a theoretical method of
assessment of K¢ of brittle fibres. Let us return to
model 1 (see Fig. 4), which represents a brittle
fibre and a brittle layer. A crack in the layer is, in
fact, a notch on the fibre. We assume that: (1) the
model under consideration has a layer thickness
equal to the first critical thickness, #7'; (2) oy,
equals oty = E¢/10. This means that appearance of
acrack in the layer of critical thickness immediately
initiates fracture of the fibre, if oy, = oty. In this
case the nominal tensile stresss in the fibre must be
equal to the tensile strength of the fibre, which has
no layer, because ] is not more than £} .

This situation can be met in real systems, which
are analogous to the systems like B/TiB, and
B/AIB,, if their #" values equal 0.0566 um at f; =
394 or 3.56, respectively. The situation can be
expressed by an equation, which is analogous to
Equation 12; but we must replace o; by Gy, and
0y, by ohs. Therefore, we have

ot = 0.79 kG (15 Ir*)2. (26)

As we have shown, the stress intensity factor of
model 1 isexpressed by Equation 11. This equation
can be used for the above case in the following
way. We assume K; = K¢, if 0 = Gy and #f =a.
Therefore, the following joint treatment of

Equations 11 and 26 will give us the equation
Kic = 25 abg*V2.

@7

We can transform Equation 27, if we insert £;/10
instead of ¥ to give:

TABLE III Calculated values of Kjc of some high-
strength brittle fibres

Fibre Es X 107% (kgmm™?) Ky¢ (kg mm™*?)
ALO, 47 6.43
Carbon, type I 39 5.34
Carbon, type IT 24 3.29
BN 9 1.23
B 38 5.20
SiC 47 6.43
TiB, 51 6.98
B.C 47 6.43
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Kic = 025 Eg*12, (28)

Equation 28 shows that only the Young’s
modulus of the fibre has a strong effect on the
critical stress intensity factor of the fibre. In this
paper the effect of the structure of the fibre on
K;c is not discussed, thus Equation 28 shows a
lower value of Kjc for the brittle fibres than
would normally be the case.

Table III shows the calculated values of K¢ for
the majority of well-.known highstrength brittle
fibres. In our calculations we used »* = const =
3x 107"mm. In reality, the lattice dimension is
slightly different for different fibre materials, but
this is not important in our calculations because
the latter must be considered to approximate for
the present. It is interesting to note that Kelly [6]
has shown that the available data for K¢ of bulk
alumina and reactor graphite are 13 to 14 and 1.4
to 4.3, respectively.

6. Conclusions

It has been shown that the brittle layer in the fibre
composite material reduces the ultimate tensile
strength of latter, if the thickness of the layer is
greater than the critical thickness. The derived
equation for the calculation of the critical
thickness of the layer shows that it is proportional
to the diameter of the fibre and is affected by the
ultimate tensile strength and Young’s moduli of
the fibre and the layer. Equations have been
derived which show the effect of the layer’s thick-
ness on the ultimate tensile strength of the
layer/fibre system.

An experimental study using B—SiC fibres has
shown that the critical thickness of the layer #; =
1.0 to 1.5um. Experimental data coincide well
with those calculated theoretically. On the basis of
the theory, a method has been developed for the
theoretical calculation of the critical stréss intensity
factor, Kyc of brittle fibres. Values of K¢ for
different brittle fibres have been established.

Appendix
Calculation of K|
Let us consider an infinite plate separated by an
interface of two phases (Fig. A1), have no different
Young’s moduli £, and E,. The first phase has a
crack perpendicular to the interface. We assume
that:

(1) the strength of the interface is ideal (there
is no delamination in the interface);
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Figure A1 The model of a two-component infinite plate
which has a crack to the left of the interface.

(2) the stress distribution at the tip of the crack
is the same in a single phase plate,i.e.

a(r;0) = [KiN(2mr)] f(6);

(3) the stress intensity factor, K; changes
drastically when the crack propagates through the
interface;

(4) the load which is not sustained by half of
the crack is compensated by a high local stress at
the crack tip.

Now suppose that we section the crack along its
length [12], discard one half of the plate and
replace its effect by a system of equivalent forces.
In this case the load which is not nearest to the
interface half of the crack is balanced by the high
local stress at the tip of the crack,i.e.

(A1)

fa o, (r0)dr 6 = 0. (A2)
tH

a defines the size of a zone of single stress and is
calculated under the condition that g,, (r;0) at
r = g is equal to nominal stress. Let us consider a
case, when the crack is so close to the interface
that a point « is in the second half of the plate.
According to (3) above, we assume 0,,(r; )
changes by E,/E, while the single stress propagates
through the interface (Fig. A2). We can now write
an equation for the conditions of balance:

a b
oll—jo Oyy (r:8)dr = Ull_J‘O Oyy (r;0) dr

a E2
_L 5 Oyy(r;0) dr = 0. (A3)

Gy(r;B)

| S,
0 B A X

Figure A2 The peculiarity of the stress pole in the vicinity
of the interface.

a is calculated from

E
b—;f Oyy(@;0) = 0,. (A4)
Equations Al and A4 give
E, K
— = 0‘
E; /(2ma)
According to the first assumption
€1 = €2
and ‘
01/Ey = 03/E;, (AS5)
so we have
Ki
= . A6
2704 (A6)

If we have b = na, where 0 < n < 1, Equation
A3 is transformed to become:

an Kldl"

_J‘a Eykqdr
o ~/(2mr)

b EvGm ~ 04D

01["“

After integration we have

NEE R

Equations A6 and A8 give us

nlE,

i = o] {E [+ V(LB — 1)]} - (49

but Equations A5 and A9 give

{E_ION/ nlE, [E,
E, 2 1+\/”[(E1/Ez)“1] ’
(A10)

KI=
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From Equation A10, when the crack meets the
interface, i.e. n = 0, the stress intensity factor K;
equals:

Ky = o \/(77151/E2)-

When the crack is far from the interface,ie.n=1,
we have

(A11)

KI = 0 \/(ﬂl):

Which is in agreement with K; for a single-phase
plate. The last result shows that if the crack is
further from the interface than ¥, Ky may be
calculated from the typical equation for a single-
phase plate.

When n ~ 0 and £, /E, <1, Ky decreases, and
if £y /E, > 1, Ky increases.

When the crack enters the second half of the
plate (Fig. A3) K; changes drastically. In this case,
an equation of balance is:

(A12)

a
0.1(1 —m)+02ml——f0 Oyy(r;0)dr = 0,

(A13)
where 0 <m < 1.¢ is calculated from the equation:
Kt
= . Al4
2mo2 (A19)

Integration of the Equations A5 and A13 give us

E K?
Ei 0 (1 —m) [+ oyml = n—g‘z

(A15)

s

////?\1
{ 2t Aj X

Figure A3 The model of a two-component infinite plate
which has a crack to the right of the interface.
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Figure A4 The effect of £, [E, on k.

therefore,

E E
K; = ng/ {rrl [F; +m (1 —b—,i)”(Aw)
Ifm=0,
K "‘UA/ lé
1 = 03 7TE2

Ky = o, \/(xl). (A18)

Equation A17 shows that if the crack enters the
second half of the plate, K increases by £ /F, and
then decreases gradually until the value of K fora
single-phase plate is reached. These results are in
accordance with analogous results obtained by the
finite element method [13, 14].

We now consider a semi-infinite plate of two
different brittle materials, which was shown earlier
in Fig. 4. The two phases are separated by the
interface, which is parallel to one edge of the
plate. One component of the model has only one
finite dimension, apart from thickness. This
component contains the crack. For this case it is
necessary to make one change to assumption 4
which was adopted for the infinite plate. A

(A17)

andifm =1,

particularly high local stress at the tip of the crack

compensates only for load which is not along the
whole length of the crack, o, [21]. In accordance
with this, it is necessary to substitute 2/ for / in
Equations A1l and A12. These equations give

KI:
KI:

01 \/(7-7TE1 1E3)
o1 @21,

If we introduce the factor x, which is affected
by the ratio E,/FE,, then we obtain the following
equation from Equations Alla and Al2a:

(Alla)
(Al2a)



01 VQrIELJE,) = koy \/(2nl)

and eventually

oKk = VEE). (A19)

If £, = E,, then x = 1. In Fig. A4 the effect of
E{/E, on  is shown.

The same result, i.e. Equation A19, is achieved
for the case of infinite plate which is shown in Fig.
Al. This shows that the factor  is not affected by
the type of model system. Therefore, Equation
A19 is valuable for a model of an infinite bar with
a circular notch (Fig. 6).
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