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Brittle interface layers and the tensile strength 
of metal matrix-fibre composites 

M. Kh. SHORSHOROV,  L. M. USTINOV,  A. M. Z I R L I N ,  V. I. O L E F I R E N K O ,  
L.V.  V I N O G R A D O V  
A. A. Baikov Institute of Metallurgy, USSR Academy of Sciences, Moscow, USSR 

The influence of brittle layers on the ultimate tensile strength of metal matrix composites 
is discussed. An equation has been derived to calculate the first critical thickness of the 
layer. The brittle layers have two effects on the fracture of the fibre, one of which is the 
value of the local stress near the tip of the crack, situated at the fibre-layer interface. 
Methods have been developed for the theoretical calculation of the critical stress intensity 
factor, Ki c, of brittle materials. Experimental results with B-SiC fibres have shown 
that their tensile strength is reduced with increasing thickness of the SiC layer. The 
critical thickness of the layer, ti', for B-SiC fibres is about 1.0 to 7.5/am, which 
coincides well with the theoretical value of h*. 

1. Introduction 
Currently there is considerable interest in the 
problem of the influence of the interface layer on 
the tensile strength of metal matrix-fibre compo- 
sites. This problem has great practical significance 
because increasingly composites are being 
developed which have either protective deposits on 
the fibres or an interaction zone between matrix 
and fibres. The majority of experimental results 
shows that the tensile strength of composites 
decreases as the thickness of the layer increases. 
The present paper develops the latter approach in 
a more general sense. 

2. The critical thickness of.the brittle 
interface layer 

Let us consider a simple model system as shown in 
Fig. 1, which represents a fibre and concentric 
interface layer. The interface between fibre and 
the layer has a strength of not less than the com- 
ponents of the model and is considered to be 
ideally smooth. The diameter of the fibre df is 
constant and the fibres are of unit length. Stress is 
applied along the axis of the fibre and parallel to 
it. 

Weibull has shown [1] that the strength of 
brittle materials is affected by their volume 
according to the equation 

O1/0" 2 = (V21V1) 1/(3 (1 )  

where ol and o2 are the average tensile strengths 
of a brittle material, having volumes V1 and V2 
respectively; ~3 is a Weibull coefficient, which shows 
the strength distribution of the material. Exper- 
imental data have shown that the tensile strength 
of the brittle layer is increased by a decrease in its 
thickness. It is possible to transform Equation 1 
into the form 

~|1/o ~-- (F|2/Fll)1/~1 (2) 

w h e r e  ~11 and ~12 are the average tensile strengths 
of brittle layers having cross-sectional areas ofF11 
and F12 respectively;/31 is a Weibull coefficient of 
the tensile strength distribution of the layer. 

As the thickness of the layer changes fracture 
occurs in one of three different ways. In the first, 
the failure strain of the layer eul is less that that of 
the fibre euf, which is considered as constant in 
this model. The layer fractures first and is followed 
by fracture of the fibre. In the second case, eta is 
greater than euf, therefore the fibre fractures first 
and is followed by fracture of the layer. Thirdly 
eta equals euf and fracture of the components 
occurs simultaneously, i.e. 

euf = Eta (3) 
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Figure 1 The model system - fibre/layer. 

where eu~ and eul are the average failure strains of 
the fibre and the layer, respectively. Equation 3 is 
transformed into the following 

~uf/Ef = 8ul/E 1 (4) 

where E f  and E1 are the Young's moduli of the 
fibre and the layer respectively; Our is the average 
tensile strength of the fibre; 8ul is the average 
tensile strength of a layer of given thickness (we 
shall call this the critical thickness for the present). 
If  we assume aul = o11, F 1  = Fll,  Ff  =F12 and 
a~ = 8u then Equations 2 and 4 will give the 
following equation 

f )  

F t = F 1 (ES~_a~]~I ' (S) 

where F* is the critical cross-sectional area of the 
layer of critical thickness. It is more convenient to 
use another equation which is a modification of 
Equation 5. This equation has the following form 

ts = I ~dfi2 Ftl(df_Ftl)~EfOullfJl] 1/~ df Y/ j ; (6) 

where tl is the known value of the thickness of the 
layer for which Ou] is known, t~ is the critical 
thickness of the layer, dr,is the diameter of the 
fibre. It is possible to simplify Equation 6, if we 
replace am by ~ .  Here ~ is the normalized value 
of the strength of the layer. The latter corresponds 
to the cross-sectional area o f  the layer, which is 
equal to the cross-sectional area of the fibre. 
Therefore, we have 

~ can be calculated from Equation 2. Equation 7 
shows that t~ increases with the diameter of the 
fibre and the ratio E~a/E18ug. In the latter case, 
t{' increases in parabolic fashion (Fig. 2). If 

" # 5  

~,=5. "-~//I  

- - " -  E~6-,/ 

Figure 2 The graph showing effect of~Jfaul/(Elauf) o n  t 1 . 

E f ~ / E 1 8 u f  = I, then tf ~ 0.2 d~. Therefore, from 
a practical view point it is desirable to select 
materials for fibres and protective layers in such a 
way that the ratio E~g~a/Et~ui is as high as possible. 
If the ratio is less than unity, t{ ~ will decrease with 
increasing ~1 and vice versa (Fig. 2). 

We now have an equation which enables us to 
calculate the critical thickness of the brittle inter- 
face layer for any composite material containing 
brittle fibres. If  t l / t f ,  the layer will break first and 
only after that will the fibre break. Cracks which 
appear as a result of the fracture of the layer affect 
the fracture resistance of the fibre. They are, in 
fact, notches in the fibre. In the next section we 
shall show the interaction between these cracks 
and the fibre. 

3. The influence of cracks in the layer on 
fibre fracture 

Ustinov et al. [2] have studied the microstructural 
peculiarities of fractured layers in an aluminium/ 
steel composite. Their experimental data have 
enabled them to construct a model of the propa- 
gation of cracks throughout the layer. According 
to this model (Fig. 3) the cracks appear at the 
layer-matrix interface (point S). The crack propa- 
gates through the layer towards the layer/fibre 
interface and eventually reaches the fibre (point C). 
If the stress intensity at point C is not enough to 
cause fracture of the fibre, the crack will by-pass 
the fibre completely. Otherwise the crack will 
enter the fibre and will propagate through the 
layer and the fibre simultaneously (Fig. 3). So in 
fact we have to discuss two different types of 
fracture. The first type (point C) is analogous to 
the fracture of a semi4nfinite plate with an edge 
crack. The second type is analogous to the fracture 
of a bar with a ,circular crack. 
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Figure 3 The model of crack propagation in the fibre/layer 
system. 

Let us discuss the first case. This is represented 
by the model in Fig. 4. The model consists of  a 
semi-infinite plate of two different brittle materials 
separated by  the  interface, which is parallel to the 
edge of the plate. The interface is strong enough to 
resist delamination. One component  of  the model, 
i.e. the layer, has only one finite dimension, that 
is, the thickness of the layer. This component  
contains the crack with its tip at the interface. At 
infinity the applied stresses are parallel to the 
interface and they have different values pro- 

~ c i, x 

Figure 4 The f'trst model of fracture of the fibre/layer 
system. 
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portional to the Young's moduli of  the compo- 
nents. This is a state of plane strain. Experimental 
data obtained by  Ustinov et  al. [2] permit us to 
regard the crack as quasi-static. 

I f  the model system is homogeneous, i.e. the 
two components have similar properties, then the 
stress around point C (Fig. 4) will be given by the 
equations 

_ KI cos O 1 -- sin 0--sin (8a/ 
axx (27rr)1/2 2 : 

osy - (2nr)1/2 

KI 0 0 30 
rx ,  - (21rr),/2 sin 7 cos ~-cos ~ ,  (8c) 

where r is the distance from the tip of the crack 
(point C) to a given point, 0 is the angle between 
the X-axis and the radius-vector r. We are more 
interested in stress Oyy at a distance from point C 
of not more than approximately one atomic radius 
r = r*. So if 0 = 0, Equations 8a to c become: 

KI 
O'yy - (2rrr,)a/2 (9) 

where K I is the stress intensity factor. Paris and 
Sih [3] have shown that in case of a single phase 
model system, K I is given by the equation 

KI = 1.12oOra) 1/2 (10) 

where a is the nominal stress, a is the greater semi- 
axis of  the elliptical crack. I f  we come back to our 
model system which consists of  two different 
materials, we must assume that K I will be affected 
by the difference between the properties of  these 
materials [4, 5].  Therefore, we will introduce the 
special factor K, which is affected by the ratio 
El~El (see Appendix). So that we have 

KI = 1.12KoOra) 1/2. (11) 

Equation 10 is valid for a fine fibre because the 
ratio d d t l  is more than 10 + 100. If  we substitute 
in Equations 9 and 11 of and h for a and a, 
respectively, we obtain the following equation: 

oy r = 0.79~af( t l /r*)  1/2, (12) 

where of is the tensile stress in the fibre. We assume 
that  a~ = Our, where aug is the fracture stress of 
the fibre. Here the fracture of  the fibre, which is 
initiated by the crack in the layer, occurs in 
practice simultaneously with the fracture of  the 



layer, i.e. at the fracture strain of the layer gta. 
Therefore, our is given by Equations 2 and 3 in the 
following way: 

8 u f  _ _ O-ta _ 811 _ f f 1 2 ( F 1 2  t 

and finally 

1/~71 

/ .1/151 
Ef _ It]2~ Ou, = -~1o12 [ ~  ) . (13) 

After substituting tl, t12 and o12 by tl, tl and 
8ta, respectively and inserting Equation 13 into 
Equation 12, we have the general equation 

oysy = 0.7% ~ ~tatll#4(tl) 112-'1~I. (14) 

Here eta and tl are the known values of the strength 
and thickness of the layer, respectively, tl is the 
current value of the thickness of the layer. Equation 
14 shows that @y increases with tl (Fig. 5). If  oly 
is greater than O*uf ~--Ef/10 (et~f is the theoretical 
ultimate tensile strength of the fibre material), 
then the fracture of the layer wilt immediately 
initiate the fracture of the fibre at point C (Fig. 4). 

Let us calculate er for a number of well- 
known layer/fibre systems at condition ff = t~ in 
order to ascertain whether or not the fracture of 
the layer immediately initiates the fracture of the 
fibre. First we must calculate the critical thickness 
of  the layer t~, using Equation 7, and then @y 
using Equation 14. The results of these calculations 
are shown in Table I. The layer and the fibre will 
fracture simultaneously if cryy ~> au~.t Kelly [6] has 
shown that the factor/31 equals from 3 to 6. Table I 
shows that for the system B/(BN) where the ratio 

 sb4 I 

! 

Figure 5 T h e  e f f e c t  o f  t~ o n  o-yy. 

Ef~a/~uf/:~ ~> 1 in practice, there is no detrimen- 
tal effect of a layer of any thickness on the strength 
of the fibres. For the three systems B/(B4C), 
B/(SiC) and B/(BN), the fracture of a layer of 
critical thickness in practice always initiates 
immediate fracture of the fibre. Morin [7] has 
shown that in the system B/(B4C), the strength of 
the fibre begins to decrease when the thickness of 
the layer is more than 7 to 8 #m. This more or less 
coincides with the calculated value of the critical 
thickness of the layer of B4C when/31 equals 3 to 4. 
Camahort [8] and Ryder et al. [9] have shown 
that the tensile strength of the system B/(BN) did 
not decrease when the thickness of the layer was 
equal to ~0.4/am. Unfortunately, there are no 
further data for this sytem. Nevertheless the 
existing data do not contradict our calculated 
values for this system. 

There are systems (two are shown in Table I - 
B/TiB2 and B/A1B2), where the fracture of the 
layer does not always immediately initiate fracture 
of the fibre. In this case the crack in the layer at 
the moment of meeting the fibre at point C (Fig. 3) 

i which is less than Otuf, thus the crack creates oyy, 
from the layer will not enter the fibre but will pass 
around it, as shown in Fig. 3. Therefore a new 
model should be discussed which comprises of a 
cylindrical fibre, a co-axial cylindrical layer and a 
circular notch (Fig. 6). The notch tip is situated on 

I I 

I i 

I I , z 

g 
Figure 6 The second model  of  fracture o f  
system.  

the fibre/layer 
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the fibre/layer interface. The materials of the layer 
and the fibre are different and have different 
Young's moduli Ef and El and tensile strengths of 
Our and o~1. The model is loaded at infinity by 
stresses in the layer, al, and the fibre, crf, which are 
proportional to the Young's moduli, E1 and El. 

If this rfiodel (Fig. 6) was homogeneous; the 
stress intensity factor would be calculated accor- 
ding to Paris and Sih [3] from the equation 

K I = o@Do)l/Zf(df/Do), (15) 

where a is the nominal stress in the cross-sectional 
area zrd~/4 and factor f(df/Do) is a function of the 
ratio dr/Do. In composite materials, the ratio 
dr/Do must not be less than 0.9, so f(df/Do) ~- 0.2. 
However, our model has two components of 
different materials, therefore K I must be affected 
by the ratio Ef/E 1. We can depict this effect by 
introducing factor K into Equation 15, giving 

K = 0.2K af(TrDo) u2 (16) 

where of is the nominal stress in the fibre. If we 
insert Equations 13 and 16 into Equation 9 and 
assume tll = t~, t12 = tl, 0-12 = fful, of = ffuf, then 

II we shall have the equation for calculating ary at 
the tip of the crack for the second model (Fig. 6). 

@Iy = 0.14 g (O-ul/ l f l)Eft l /~l(r*) -1/2 (dr + 2/~) 1/2. 

(17) 

i and It is also necessary to remember that ayy 
II oyy are stresses which appear during fracture of 

the layer. In fact, for both models, the layer frac- 
tures at the same fracture strain em (see Equation 

Ii 3). Equation 17 shows that if ill = 3 to 6 then ayy 
will decrease with increasing t~, (Fig. 5). The curves 
of Equations 14 and 17 intersect each other at t~, 
which equals t ~ . 

t~ ~ 0.034df (18) 

Equation 18 was derived by assuming that 
K1 ~- K2 (for the sake of simplicity). We can see 
that if t~ < t~ , then  ayyII > @y (Fig. 5). Fig. 5 
shows how oyy changes with changing of thickness 
of the layer. Let us look at Fig. 5 in detail. First it 
can be divided into four major areas from the 
viewpoint of the theoretical strength of the fibre, 

t 
(Yuf. 

t ~ GIyrnin~ where Oyymi  n is Area OA. Here Our I 
the minimum stress OyyI. This can be calculated by 
inserting a value t* in Equation 15. At t~ ~> t~ only 
the first model works (Fig. 4) and aIy changes 
from point f (at t~ -- t~) to point L (Fig. 5). The 

1 
/ ~ 7  f9 

o q 
" /z'  

Figure 7 The effect  o f  t i on 8uf  w h e n  atuf < ayy s. 

strength of the fibre Our for this area is calculated 
from the equations: 

Our = const = Of  at0~<ti~<t~ (19) 

~ f  = (Ef/Ea)~a(tl/ti) 1/(h at tl ~> t~, (20) 

where 6- 5 is the initial strength of the fibre 
(without layer). These equations give a curve, 
which shows change of the fibre strength auf as a 
function of the thickness of the layer (Fig. 7). We 
can see that for the area OA, where t ~ i Ouf Oyy ra in ,  
there is only one characteristic thickness, which 
we call the critical thickness t~; the latter divides 
the graph in Fig. 7 into two parts. In the first part, 
where 0 ~< t~ ~< t~, fracture of the model system is 
initiated by fracture of the fibre. In the second 
part, where t~ ~> t~, fracture of the model system is 
initiated by the fracture of the layer. Here euf 
decreases monotonically with increasing t~. 

Area AB. H e r e  a I y m i n  ~ o-~f ~ a y y s - a y y  s is 
calculated by inserting t o into Equation 14 or 17. 
The strength of the system is determined by 
Equation 19 (if 0 ~< t~ < t{) and Equation 20 (if 
t~ >7 t{). Now let us discuss a specific example. We 
assume the fibre has the theoretical strength 

t = a~  (Fig. 5). We shall trace how ayy changes Ouf 

with increasing t'l. If 0 ~< t[ ~< t{, the fracture of 
the system will be initiated by the fracture of the 
fibre, so that the strength of the system is 
determined by Equation 19. If t{ ~< t~ < ~i, then 
@y < t auf < o~y. Therefore, the system fractures 
according to the second model (Fig. 6). Here ayyn 
changes from point d (at t~ = t~) to point e (at 

r rl �9 �9 t 1 ~ t 1 ) (Fig. 5). If t~ >I t~ I then Ouftl < a Iy  ; the sys- 
tem fractures according to the first model (Fig. 4) 
and @y changes from point m to point L. In this 
example the fracture stress, ayy, changes along the 

t, then will change curve demsL. If Our = Uyy s Oyy 
along the curve desL. For the area AB a typical 
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graph 6-~f versus t~ is the same as the analogous 
graph for the area OA (Fig. 7). Here again there 
is only one characteristic thickness of the layer, 
i.e. the first critical thickness t~. 

t ~ U is Area BC. Here oss s < Out "~ O s y m a x * U s s m a x  

calculated by inserting t~ into Equation 17. If 0 
t~ ~ t~, the strength of the system will be deter- 

mined by Equation 19, but ift~ ~ t~ and auft -~.~ as sII 
or otu~ ~ I it will be determined by Equation GSS 
20. However, in this area it is possible to meet a 
case where II t I ayy < Our > ass, and then fracture of 
the layer does not immediately initiate fracture of 
the fibre. Therefore for the fracture of the fibre it 
is necessary to apply an additional load to the 

t system until ass reaches auf. In this case the 
strength of the fibre is determined by the equation 

t /~ *'~ 1/2 
Ouf kr ) 

auf = 0.14 K(d~ + 2t{) m " (21) 

Equation 21 was derived from Equations 9, 13 and 
15 and it is suitable for certain interval values of t~. 
This interval can be found by inserting ot~t into 
Equations 14 and 17 and by their joint solution. A 
typical graph our versus t~ for the area BC is shown 
in Fig. 8. Let us discuss another specific example. 
We assume that the fibre has a theoretical strength 

t2 (Fig. 5). For the interval t~ ~< t~ ~< t{: We have Out 
t2 @s < auf ~< any and the system fractures 

according to the second model. For the interval 
' '3 II < t: > @S and the system t~: < t l < t 1 , a s s  Our 

again fractures according to the second model. But 
, t2 and the system for interval t~ 3 ~< tl, a ly  ) Our , 

fractures according to the first model. Thus for 
this example the local fracture stress oss must 
change along the line drvL and t~ 2 = t~*, t{ 3 --- 
t~** (Figs. 5 and 6). 

t 1I The area above point C. Here Our > O'yyma x .  

f 
/ e ~ /g  

~ e~ 120 

o C C "  C 

Figure 8 The effect o f  ti  on 8,~ when O, yss < O'Eft ( ~ 
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If 0 % t] ~< t{, the strength of the fibre will be 
determined by Equation 19, but if t~ > t{, the 
strength of the fibre will be determined by 
Equation 21, because here ~t ~ _ii i Uuf /"  U s s m a  x ~ O'S s . A 
typical graph of Out versus t~ for the area above 
point C is shown in Fig. 7. 

The Fig. 5 shows that a situation is possible 
where the fracture of the layer does not immediately 
initiate fracture of the fibre. The graph auf-t~ 
shown in Fig. 8 has four specific parts and three 
critical thicknesses of the layer; t~, t~* and t~**. 
t~* and t~** can be calculated from equations 

tl** [ E l ( r * )  1/2 ]2/31'(fll-2) 
= "- -- ~ & /  (22) 

[7.9 ulq j 

[ -dm t~/&(r*)-lnlg~ t~** ~ df '/2 1.4K Ell . (23) 

The equation for calculating %us can be 
derived from Equations 14 or 17 and 18, so that 
we have 

E f  
oyrs = 0.79 K ~ 8rat~&(r*) -1/: (O.034dt) In-l/&. 

(24) 

It can be seen that the interval between t~* and 
t~** increases with the ratio E1/~uf (through factor 
K). In principle, it is possible that the third critical 
thickness can be missing from the area BC. 

Let us return to Table I. We can see that the 
systems B/(B4 C),B/(SiC) and B/(BN) are positioned 
in the area OA below point A in Fig. 5, but that 
systems B/TiB2 and B/A1B2 occur in the area AB 
above point A and below point S (if/31 = 4 to 6). 
If/31 = 3, these systems will be disposed in the area 
OA below point A, because in this case a t  = 
Ef/lO = 3800 kg mm -2 which is less i t h a n  Oyy rnin- 
Nevertheless, all five systems have a similar plot of 
~f versus t '  which is shown in Fig. 7. However, 
systems B/(B4C), B/(SiC) and B/(BN) fracture 
only according to the first model, and systems 
B/TiB2 and B/A1B2 fracture according to the first 
and second models: if t~ < t~ I (Fig. 5), they will 
fracture according to the first model. We have met 
this transition situation during calculation of %y 
due to the fracture of the layer of the critical 
thickness. This is shown in the last four columns 
of Table I. When/34 = 3, the systems BfTiB2 and 
B/A1B2 will only fracture according to the first 
Model (Table I and Fig. 7). 



Table I shows for all the systems discussed that 
the fracture of the layer of any thickness t~ 
(t~ /> t{) immediately initiates the fracture of  the 
fibre. However, Fig. 5 shows that, in principle, it is 
possible to meet systems where this does not 
always immediately occur. 

4. Experimental study of the influence of 
the thickness of the layer (deposit) of 
SiC on the UTS of B-SiC fibres 

For experimental verification of the theory, B-SiC 
fibres were used. Some early results have been 
published [10]. The diameter of the boron core 
was 0.1 mm, and the thicknesses of the SiC layers 
were 1.5, 3, 5 and 8.5pm. The layers were 
produced by a gas chemical condensation process 
at a fixed temperature for all thicknesses. The 
thickness of the layer increased with the duration 
of the process. The temperature and duration of 
the process, however, were not so great as to 
reduce noticeably the strength of the boron fibre. 

All fibres were tested on a "Shemadzu" tensile 
test machine with deformation rate of 0.1 sec -~ . 
The gauge length of the samples was 25 mm. The 
samples were prepared by a standard method, 
which is typical for these kinds of  samples. 

The results of this test are shown in Table II 
and in Fig. 9. They show that a drastic decrease in 
strength of the fibres will occur when the thick- 
ness of  the layer is greater than 1.5 gm. 

Fig. 9 shows the experimental and theoretical 
results for the tensile strength of the B-SiC fibres. 
The calculated results are shown by curves drawn 
for different values of ~1(/~1 = 4, 5 and 6). The 
results were calculated from the equation: 

Ou, B/SiC = Ou, SiC VSiC + Ou, B VB (25) 

where ~u, msic,  ~u, sic are the tensile strength of 
B-SiC and SiC fibres, respectively, flu, sic was 
calculated from Equation 25 assuming that on = 
200kgmm -2 when the thickness of the layer 

TABLE II Tensile strength of the B/SiC fibres with 
different layer thicknesses 

ti(um) ~u, B/SiC Su, B/SiC, Number of 
(kg m m -  2 ) (kg m m  -2 ) samples 

0 298 48.3 63 
1.5 290 58.5 52 
3.0 247 50.6 52 
5.0 233 18.5 64 
8.5 165 12.9 67 
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Figure 9 Experimental  results of  tensile testing of  B -S iC  
fibres with different thicknesses of  the  SiC layers. The 
curves were calculated theoretically. 

equals ~0 .02mm (this is equivalent to a fibre 
diameter of 0.1 mm). Vsi c is the volume fraction 
of SiC in B-SiC fibres (Vsic = F12); VB is the 
volume fraction of boron in B-SiC fibres. ~u,B is 
the nominal tensile fracture stress in the boron 
component of the B-SiC fibres. This is calculated 
from Equation 20. We also used the following 
characteristic data in our calculation: Esi C = 
4 7 0 0 0 k g m m  -2 ; E B = 38 000 kgmm- :  and the 
tensile strength of boron fibres (without the SiC 
layer), = 298 kgmm -~ (see Table II). The critical 
thicknesses of the SiC layer, t~', calculated from 
Equation 7, were 3.88; 2.15; 1.18 and 0.65 p_m for 
/31 = 3, 4, 5 and 6, respectively. 

We can see that the experimental and theoretical 
data for /31 = 4 to 5 coincide quite well. These 
values of /31 were more typical for SiC fibres. 
Nevertheless, there is quite a large discrepancy 
between experimental and theoretical data at a 
thickness of 8.5 pm. Further study has shown that 
the tensile strength of the boron fibres is itself 
drastically reduced due to too long a deposition 
process of the SiC layer with a thickness of 8.5/am. 
Annealed boron fibres had an ultimate tensile 
strength, au, B, of 229 kg mm -2 . This, and probably 
the cracks which appeared in the layer due to 
stresses in the components, are the reasons for 
discrepancy. The theoretical critical thickness of 
the layer t~' lies between points B (for j31 = 4) and 
C (for ~1 = 5) (see Fig. 9). It is more probable 
that t~ equals ~ 1 pro. 

The general conclusion from these experimental 
data is that our theoretical treatment is confirmed 
by the experimental results from tests on B/SiC 
fibres. 
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5. Assessment method for Kic of brittle 
fibres 

Archangelskaya and Mileiko [11] have obtained 
an equation which allows us to calculate Kic for 
fibre composite materials, if we know Ktc of the 
matrix and fibres. At the moment there is no way 
of determining KIc of the fibres alone. 

Previous sections of this paper give an 
opportunity to develop a theoretical method of 
assessment of Kic of brittle fibres. Let us return to 
model 1 (see Fig. 4), which represents a brittle 
fibre and a brittle layer. A crack in the layer is, in 
fact, a notch on the fibre. We assume that: (1) the 
model under consideration has a layer thickness 
equal to the first critical thickness, t~'; (2) oyy 
equals atf  = Ef/lO. This means that appearance of 
a crack in the layer of critical thickness immediately 
initiates fracture of the fibre, if ayy = at~f. In this 
case the nominal tensile stresss in the fibre must be 
equal to the tensile strength of the fibre, which has 
no layer, because t~ is not more than t~'. 

This situation can be met in real systems, which 
are analogous to the systems like B/TiB2 and 
B/A1B2, if their t~' values equal 0.0566 pm at/31 = 
3.94 or 3.56, respectively. The situation can be 
expressed by an equation, which is analogous to 
Equation 12; but we must replace of by ~u~, and 
oyy by otf. Therefore, we have 

t 0.79 =i * * 1/2 Cruf = Kauf(tl/r ) . (26) 

As we have shown, the stress intensity factor of 
model 1 is expressed by Equation 11. This equation 
can be used for the above case in the following 
way. We assume K I = KIC, if o = our and t{' = a. 
Therefore, the following joint treatment of 
Equations 11 and 26 will give us the equation 

Kic = 2.5 a~r .1/2. (27) 

We can transform Equation 27, if we insert Ef/lO 
instead of o*uf to give: 

T A B L E  III  Calculated values o f  KIC of  some high- 
strength brittle fibres 

Fibre Ef  X 10 -3 (kg m m  -2) KIC (kg ram-  3/2) 

A1203 47 6.43 
Carbon, type I 39 5.34 
Carbon, type II 24 3.29 
BN 9 1.23 
B 38 5.20 
SiC 47 6.43 
TiB 2 51 6.98 
B4C 47 6.43 

KIC ~- 0.25 Err*l/2. (28) 

Equation 28 shows that only the Young's 
modulus of the fibre has a strong effect on the 
critical stress intensity factor of the fibre. In this 
paper the effect of the structure of the fibre on 
KIC is not discussed, thus Equation 28 shows a 
lower value of Kic for the brittle fibres than 
would normally be the case. 

Table III shows the calculated values of KIc for 
the majority of well-known high-strength brittle 
fibres. In our calculations we used r* = const = 
3 x 10-Vmm. In reality, the lattice dimension is 
slightly different for different fibre materials, but 
this is not important in our calculations because 
the latter must be considered to approximate for 
the present. It is interesting to note that Kelly [6] 
has shown that the available data for KIC of bulk 
alumina and reactor graphite are 13 to 14 and 1.4 
to 4.3, respectively. 

6. Conclusions 
It has been shown that the brittle layer in the fibre 
composite material reduces the ultimate tensile 
strength of latter, if the thickness of the layer is 
greater than the critical thickness. The derived 
equation for the calculation of the critical 
thickness of the layer shows that it is proportional 
to the diameter of the fibre and is affected by the 
ultimate tensile strength and Young's moduli of 
the fibre and the layer. Equations have been 
derived which show the effect of the layer's thick- 
ness on the ultimate tensile strength of the 
layer/fibre system. 

An experimental study using B-SiC fibres has 
shown that the critical thickness of the layer t[ = 
1.0 to 1.5 gm. Experimental data coincide well 
with those calculated theoretically. On the basis of 
the theory, a method has been developed for the 
theoretical calculation of the critical stress intensity 
factor, KIC of brittle fibres. Values of Kzc for 
different brittle fibres have been established. 

Appendix 
Calculat ion of  Ki 
Let us consider an infinite plate separated by an 
interface of two phases (Fig. A1), have no different 
Young's moduli E1 and E2. The first phase has a 
crack perpendicular to the interface. We assume 
that: 

(1) the strength of the interface is ideal (fi~ere 
is no delamination in the interface); 
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Figure A1 The model of a two-component infinite plate 
which has a crack to the left of the interface. 

(3) the 
drastically 
interface; 

(2) the stress distribution at the tip of the crack 
is the same in a single phase plate, i.e. 

e(r; O) = [Ki/x/(27rr)] f(0);  (A1) 

stress intensity factor, KI changes 
when the crack propagates through the 

(4) the load which is not sustained by half of 
the crack is compensated by a high local stress at 
the crack tip. 

Now suppose that we section the crack along its 
length [12], discard one half of the plate and 
xeplace its effect by a system of equivalent forces. 
In this case the load which is not nearest to the 
interface half of the crack is balanced by the high 
local stress at the tip of the crack, i.e. 

fo a (r; 0) dr 0 = 0. (A2) Gyy 

a def'mes the size of a zone of single stress and is 
calculated under the condition that %y (r; 0 ) a t  
r = a is equal to nominal stress. Let us consider a 
case, when the crack is so dose to the interface 
that a point a is in the second half of  the plate. 
According to (3) above, we assume evy(r;O ) 
changes by E2/E1 while the single stress propagates 
through the interface (Fig. A2). We can now write 
an equation for the conditions of balance: 

o11-- evv(r;O)dr = o11-- gry(r ;0)  dr 

E2 
ayy(r; O) dr = O. (A3) 

8=0 

0 6 A X 

Figure A2 The peculiarity of the stress pole in the vicinity 
of the interface. 

a is calculated from 

E 2  
E-~ o,y (a; 0) = 02. (A4) 

Equations A1 and A4 give 

E2 KI 
E1 x/(2rra) - o2. 

According to the first assumption 

and 
e l  = {72 

U l I E  1 = 0 2 / E 2 ,  ( A S )  

so we have 

K~ (A6) 
a - 2 7 r o ~  " 

If  we have b = na, where 0 ~< n ~< 1, Equation 
A3 is transformed to become: 

l fan Kldr a E2~cIdr 
o, --Jo x/~2~r) --~an E1 X/(2rrr) - 0. (A7) 

After integration we have 

(m) 
Equations A6 and A8 give us 

K I = o, 2 [1 +N/n(E1/E2 - .1 )  ' 

but Equations A5 and A9 give 

KI = ~ 02 
rrlE1/E~ } 

+ %/n [(E, IE2) -- 1] " 

(AIO) 

1 8 5 9  



From Equation A10, when the crack meets the 
interface, i.e. rl -+ 0, the stress intensity factor K I 
equals: 

KI = ol s (A11) 

When the crack is far from the interface, i.e. n = 1, 
we have 

K1 = el X/0r/), (a12) 

Which is in agreement with K r for a single-phase 
plate. The last result shows that if the crack is 
further from the interface than ~, K I may be 
calculated from the typical equation for a single- 
phase plate. 

When r/-+ 0 and El~E= < 1, K I decreases, and 
if E,/E2 > 1, KI increases. 

When the crack enters the second half of the 
plate (Fig. A3) K I changes drastically. In this case, 
an equation of balance is: 

Ol1(1-- rn)+oEmI %y(r;O) dr = O, 

(A13) 

where 0 ~< m ~< 1. a is calculated from the equation: 

a - 2zro~" (A14) 

Integration of the Equations A5 and A13 give us 

E-!1 o2(1 --re) l+ o2rnl - K~ (A15) 
E 2 7r~r2 ' 

I r n e  

X 

Figure A3 The model of a two-component infinite plate 
which has a crack to the right of the interface. 
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Figure A4 The effect ofE 1/E 2 on K. 

therefore, 

K I = a2J { 

Ifm = 0, 

K1 

and if m = 1, 

rrl [F@2'+rn ( 1 - - ~ ) I } ( A 1 6 )  

: o 2 / /  17rlE,t (A17) 
N 

KI = a2 x/(rr/). (A18) 

Equation A17 shows that if the crack enters the 
second half of the plate,K1 increases by E,/E2 and 
then decreases gradually until the value of KI for a 
single-phase plate is reached. These results are in 
accordance with analogous results obtained by the 
finite element method [13, 14]. 

We now consider a semi-infinite plate of two 
different brittle materials, which was shown earlier 
in Fig. 4. The two phases are separated by the 
interface, which is parallel to one edge of the 
plate. One component of the model has only one 
finite dimension, apart from thickness. This 
component contains the crackl For this case it is 
necessary to make one change to assumption 4 
which was adopted for the infinite plate. A 
particularly high local stress at the tip of the crack 
compensates only for load which is not along the 
whole length of the crack, ol [21]. In accordance 
with this, it is necessary to substitute 21 for l in 
Equations A11 and A12. These equations give 

KI = o, X/(2rrEI/E2) (A11a) 

KI = ol x/(27r/). (A12a) 

If we introduce the factor K, which is affected 
by the ratio E,/E2, then we obtain the following 
equation from Equations A1 la and A12a: 
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O1 *V/(27T/E1/E2) = KO 1 ~(2 / r / )  

and eventual ly  

= X / (E , /E2 ) .  (A19)  

I f  E1 = E2 ,  then  K = 1. In Fig. A4 the effect  o f  

E1/E2 on K is shown.  
The same result ,  i.e. Equa t ion  A19 ,  is achieved 

for the case o f  infini te  plate which  is shown in Fig. 

A1.  This shows that  the factor  K is no t  af fec ted  by 

the type  o f  mode l  system. Therefore ,  Equa t ion  

A19 is valuable for a m o d e l  o f  an infini te  bar wi th  

a circular no t ch  (Fig. 6). 
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